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We use an “equation-free,” coarse-grained computational approach to accelerate molecular dynamics-based
computations of demixing �segregation� of dissimilar particles subject to an upward gas flow �gas-fluidized
beds�. We explore the coarse-grained dynamics of these phenomena in gently fluidized beds of solid mixtures
of different densities, typically a slow process for which reasonable continuum models are currently
unavailable.

DOI: 10.1103/PhysRevE.75.051309 PACS number�s�: 45.70.Mg, 47.11.St, 47.61.Jd

I. INTRODUCTION

Particulate flows, even for experimental systems of small
size ��10 cm�, consist of a very large number of discrete
dissipative particles. Molecular dynamics �MD� simulations
often serve as a quantitative modeling tool for such flows;
however, such simulations for realistically large temporal
and/or spatial scale problems are challenging, even with
modern computers.

In most particulate flows, relevant spatial and temporal
scales are much larger than those of individual particles, and
the development of macroscopic, coarse-grained models is
one of the outstanding issues in the statistical mechanics of
such flows. In this paper, we refer to the MD simulation as
the microscopic �or detailed� model, and to the extraction of
lower-dimensional, hydrodynamic-level descriptions as
coarse-graining. Navier-Stokes-like continuum models,
based on the kinetic theory of granular materials �see Refs.
�1,2� and references therein�, have been developed by many
authors; however, quantitative coarse-grained models for re-
alistic particles �accounting for frictional interactions, hetero-
geneity among particles, and/or other interparticle forces,
such as van der Waals forces� in many regimes of practical
interest �e.g., dense and/or cohesive particulate flows where
enduring contacts between particles occur� are currently un-
available. Our approach aims at enabling MD-level simula-
tions to perform coarse-grained modeling tasks precisely in
cases where explicit coarse-grained models are unavailable.

We will illustrate our approach using well-known phe-
nomena for which the derivation of coarse-grained models is
still in flux; mixing and demixing �segregation� can occur
when dissimilar particle mixtures of different sizes and/or
densities are subject to a strong enough upward fluid flow
�3�. A few different continuum models, some more phenom-
enological and other more rigorous, have been proposed
�4,5�. Such models often reproduce the phenomena in a
qualitatively correct manner; however, quantitative agree-
ment is generally elusive �5�. Furthermore, kinetic theory-
based continuum models for binary mixtures are much more
complicated than those for uniform particles, and numerical
simulation becomes more time-consuming �e.g., by an order

of magnitude in Ref. �5��. In the absence of a quantitative
coarse-grained model, accelerating the computation using
�quantitative� microscopic models becomes vitally impor-
tant.

The objective of this paper is to demonstrate a multiscale
computational approach, the so-called “equation-free”
coarse-grained approach, enabling accelerated integration of
MD-based microscopic simulations of dense particulate
flows. This recently developed approach has been applied to
a range of science and engineering problems where coarse-
grained model is believed to exist, yet only a microscopic,
detailed model is available �6,7�. In this approach, quantities
necessary for traditional continuum numerical analysis are
estimated from short bursts of microscopic simulation �rather
than from evaluating explicit coarse-grained equation formu-
las�. As a result, coarse-grained computations are done with-
out ever using their governing equations; the approach is
therefore called “equation-free.”

Our paper is organized as follows: An MD-based detailed
model for gas-fluidized beds of particle mixtures is described
in Sec. II. We start by presenting some demixing results ob-
tained by �brute-force, highly time-consuming� direct simu-
lations, and then identify possible coarse-grained variables
that can be used for closures of a hydrodynamic-like coarse-
grained model �Sec. III�. We explain ideas and procedures of
equation-free computation in Sec. IV, and follow this ap-
proach to efficiently integrate demixing simulations using
two different levels of coarse-graining �Secs. IV B and
IV C�. The paper is concluded in Sec. V.

II. DETAILED, FINE-SCALE MODEL

Particles are assumed to be uniform-sized soft spheres
�which can have different mass�, whose contact force is mod-
eled following Cundall and Strack �8�, decomposing the in-
teracting force into the normal and tangential directions rela-
tive to the displacement vector between the objects at
contact, Fcont= �Fn ,Fs� �8�:

Fn = �kn�n − �nvn�n̂ , �1�

Fs = − sgn�vs� � min�kt�s,��Fn��ŝ , �2�

where kn is the �Hookean� spring stiffness in the normal di-
rection; �n is the amount of overlap; �n is the damping co-*Electronic address: yannis@princeton.edu
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efficient �determining the coefficient of restitution e�; vn is
the normal component of the relative velocity at contact; n̂ is
the unit vector in the normal direction at contact pointing
outward from the particle center; vs is the tangential compo-
nent of the relative velocity at contact; kt is the tangential
spring stiffness that is related to kn by the Poisson’s ratio of
the material �P �kt=2kn�1−�P� / �2−�P�; a typical value of
0.3 is used for �P�; �s is the magnitude of tangential dis-
placement from the initial contact; � is the coefficient of
friction; ŝ is the unit vector in the tangential direction at
contact.

The gas phase hydrodynamics is accounted for in a
volume-averaged way �9,10�. The same type of model has
been used to study size difference-driven demixing �11�; here
we consider density-driven demixing. The equation of mo-
tion for each particle is

mp
dvp

dt
= mpg + Fcont +

Vp

�
�����ug − vp� − Vp�p , �3�

where mp and vp are individual particle mass and velocity,
respectively. The right-hand side includes various forces act-
ing on the particle, the last two terms arising from the gas-
solid two-way coupling; the total force acting on the particles
due to the fluid is commonly partitioned into the local drag
part and the effective buoyant part �10�, as was done here.
The first term is the body force due to gravity, where g is the
gravitational acceleration, and the second term is the afore-
mentioned contact force. The third term accounts for the drag
force, where � is the interphase momentum transfer coeffi-
cient �12,13�, � is the local particle phase volume fraction,
ug is the local-average gas phase velocity, and Vp is the in-
dividual particle volume. The last term accounts for the hy-
drodynamic force due to the gradually varying part of the
pressure field, where p is the local-average gas phase pres-
sure.

We deliberately choose demixing occurring in narrow
beds �cross sectional area of 15dp�15dp with periodic
boundary conditions for both lateral directions, where dp is
the particle diameter� as a test problem; for this problem size
brute-force computations with the detailed model are still
feasible, and can then be used to critically test and validate
the coarse-grained computations presented below. These are
quasi-1D flows, where the coarse-grained gas flow is effec-
tively 1D, while particle simulation is maintained to be fully
3D. Demixing becomes more pronounced �14� in such nar-
row beds.

In general, the gas phase variables in the last two terms in
Eq. �3� are obtained by simultaneously integrating the bal-
ance equations for gas-solid mixtures; however, for the case
of 1D incompressible gas phase, Eq. �3� can be simplified by
considering the 1D continuity relation:

�1 − ��ug + �us = Us, �4�

and the reduced momentum balance equation:

0 = − �1 − ���p + �����us − ug� , �5�

where us is the coarse-grained particle velocity, and Us is the
superficial gas flow velocity, in the direction opposite to that

of gravity. After some manipulation �using Eqs. �4� and �5��,
Eq. �3� can be reduced as follows, where gas phase effects
appear as additional terms in the individual equation of mo-
tion, involving solid phase coarse-grained, continuum vari-
ables:

mp
dvp

dt
= mpg + Fcont +

Vp

�
����

� ��us − vp� −
1

�1 − ��2 �us − Us�� . �6�

In our study, the Reynolds number based on the particle size
is generally very small �	�0.1�, and � is approximated to
be

���� = 18
�g

dp
2 ��1 − ��−2.65, �7�

where �g is the gas phase viscosity. We nondimensionalize
quantities by using 
s, dp, 	gdp, and 	dp /g as characteristic
density, length, velocity, and time scales, where 
s is the
solid phase mass density of the lighter particles. This detailed
model accurately reproduces the minimum fluidization ve-
locity, and has been used to study mechanically vibrated flu-
idized beds of cohesive fine powders �15�.

III. DIRECT SIMULATIONS

Demixing is typically a slow process, whose occurrence
and duration depend on the density difference and the gas
flow rate. Direct simulation �i.e., “brute-force” integration of
the detailed model� with a sufficiently large Us �
�Us � �,
starting from a homogeneously mixed, packed �static� state
�Fig. 1�, shows that particles of different densities gradually
demix spontaneously. When Us is well above the minimum
fluidization rate of both species �as in Fig. 1�, a void region
rises up in a periodic manner and the bed exhibits effectively
1D traveling waves �1D-TWs� �16�. Such waves are experi-
mentally observed in narrow fluidized beds �17�. At these
relatively large gas flow rates, demixing occurs superposed

FIG. 1. �Color online� Snapshots of a gas-fluidized bed of a
binary mixture of identical size but different density particles, un-
dergoing spontaneous demixing, shown at times equally separated
by �t=100. Light-colored �yellow� particles are twice as dense as
the dark-colored �red� ones �e=0.9; �=0.1; kn=2.0�105; Us

=0.41; dp=100 �m; 
s=0.90 g/cm3�.
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on the persistent oscillatory motion driven by 1D-TWs.
A typical computation of an entire demixing process in

the above “tiny” system �2�107 integration steps of 12 500
particles shown in Fig. 1� takes nearly two days �or more
than a week for smaller gas flow rates, where demixing oc-
curs even more slowly�, on a single-processor PC of
1.7 GHz CPU. Obtaining an ensemble of long simulations
for statistical averaging purposes can be extremely time-
consuming even for such a small system.

Coarse-grained description and “observables”

In the literature, the degree of mixing or demixing is often
characterized by various spatially lumped indices �or scalar
“order parameters”� �3,18–20� such as the so-called Lacey
mixing index �18� �see its use, e.g., in Ref. �11��:

M =
S0

2 − S2

S0
2 − SR

2 , �8�

where S0 and SR represent the variances for a completely
demixed �segregated� and a completely mixed state, respec-
tively, and S represents the variance for the �current snapshot
of the� mixture between fully random and completely segre-
gated states. Such an index provides convenient quantifica-
tion; however, it does not suffice to describe the bed at a
detailed level. In our study, we seek coarse-grained variables
�or “observables”� that could be useful in continuum model-
ing descriptions.

As in the two-fluid modeling approach �1�, it is natural to
think of hydrodynamic variables as candidate coarse observ-
ables. From computational experiments through direct simu-
lation, we observe that, in the course of demixing in
quasi-1D beds, the process depends nearly exclusively on the
local density; this suggests that the 1D volume fraction pro-
files themselves would be useful coarse observables. When,
without disturbing the particle positions, we suddenly ran-
domize the individual particle velocities �hence the granular
temperature as well� and continue the simulation, the demix-
ing process remains essentially undisturbed.

We recognize that the cumulative distribution functions
�CDFs� of the particle positions,

F�h� = �
0

h

f�z�dz , �9�

while effectively containing the same information as volume
fraction profiles, are a slightly more convenient set of coarse
observables; f�z� above is the one-dimensional probability
distribution function for particles’ vertical positions �which
can be thought of simply as a normalized volume fraction
profile�, and h is the specific bed height under consideration.
Cumulative distribution functions, compared to volume frac-
tion profiles, have the advantage of being smoother; they
suffer from less noise, and they facilitate the lifting proce-
dure �which will be explained below in Sec. IV A�, an essen-
tial step in “equation-free” computations. As the CDFs are
always bounded by 0 and 1, we choose their inverse, as our
even more convenient coarse-grained variables in the follow-
ing computations �Fig. 2�. For these reasons we choose, in-

stead of discretized volume fraction profiles �but equivalent
to them�, discretized inverse CDFs �ICDFs� as our actual
coarse observables in the following. In traditional math-
ematical modeling, once the appropriate variables �coarse
observables, here particle position ICDFs� are identified, one
attempts to derive governing equations for their time evolu-
tion. Here, we follow instead an equation-free approach: We
circumvent the derivation of such coarse-grained equations,
yet still exploit their conceptual existence in accelerating de-
tailed computation.

IV. EQUATION-FREE COMPUTATIONS

When time series of coarse-grained observables �obtained
by short bursts of direct integration of the detailed model�
are smooth and slowly varying, we can easily estimate their
local time derivatives—not at the level of individual particle
evolution, but—at the coarse-grained level of ICDF evolu-
tion. We can then project the system state �the ICDF profiles�
to a future time �e.g., using the time derivative estimates in a
forward Euler or more sophisticated scheme�. If we now ini-
tialize the microscopic simulator consistent with the future
�projected� values of the coarse observables, it is easy to see
that we can actually accelerate the overall computation by
“skipping” the integration of the detailed model over the
projection time. This simple idea underpins coarse projective
integration �21,22�; see Fig. 3 for illustration and below for
details.

In equation-free computations, traditional continuum nu-
merical techniques are directly applied to the outcome of
appropriately initialized short bursts of microscopic �de-
tailed� simulation, and the unavailable coarse-grained equa-
tions are “integrated” or “solved” without ever being written
down �6,7,23�. The essential steps are the following:

�1� Identify coarse observables �which are discretized
ICDFs or their parametrization coefficients in our study�. For
convenience, we denote the microscopic description �here
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FIG. 2. �Color online� �Left panel� Snapshot of the bed at t
=150 in Fig. 1. �Right panel� Time evolution of inverse CDFs
�ICDFs� of the distribution of lighter particles �dark-colored; red in
color online�. Each line is separated by �t=50, started from a fully
mixed, fully fluidized state.

COARSE-GRAINED COMPUTATIONS OF DEMIXING IN … PHYSICAL REVIEW E 75, 051309 �2007�

051309-3



the individual particle positions� by x, and their coarse-
grained description �here the ICDFs� by X.

�2� Choose an appropriate lifting operator �L, which maps
X �ICDFs� to one �or more, for the purposes of variance
reduction and ensemble-averaging� consistent description�s�
x �here, particle positions�. Figuring out an efficient lifting
operator is essential.

�3� Using the lifting operator, initialize the detailed model
consistent with desired coarse-grained values x�t0�
=�L(X�t0�).

�4� Run the detailed simulator for a short time horizon
�Th�0� to obtain x�t0+Th�.

�5� Use an appropriate restriction operator MR which
maps the microscopic state�s� to the macroscopic description
X�t0+Th�=MR(x�t0+Th�). This constitutes the coarse time-
stepper �Th

for the coarse observables: X�t0+Th�

�Th

(X�t0�). This process results in time series of the coarse
observables �ICDFs�.

�6� Apply desired numerical techniques �forward Euler, in
our study� to the coarsely observed results in step �4�, and
repeat, so as to accelerate the overall simulation.

A. From ICDFs to consistent particle configurations: Lifting

In the lifting step, given an ICDF as the coarse observ-
able, we need to be able to efficiently construct particle con-
figurations consistent with it. Arranging particles �i.e., sphere
packing� in three-dimensional space with an arbitrarily pre-
scribed volume fraction profile, especially when dense, is
nontrivial and generally time-consuming �24�, as excessive
particle-particle overlap has to be avoided; it would be less
difficult for dilute particulate flows. In our study, the total
height of a bed remains virtually the same, even in the pres-

ence of 1D-TWs �see the second and later frames in Fig. 1�.
We do not, therefore, reassign particle positions from scratch
in each lifting step. Instead, we utilize particle locations
available from an earlier step, and switch only particle indi-
ces �or “colors,” whether “red” or “yellow”� until the pre-
scribed ICDF becomes satisfied; this makes the lifting opera-
tor computationally inexpensive. For polydisperse particles
this scheme is clearly insufficient, and should be modified;
this would be a subject of future research.

For a narrow range of Us’s slightly above the minimum
fluidization rate, the time evolution of ICDFs does not ex-
hibit any waviness �see thin lines in Fig. 4�a� and Sec. IV B�,
and demixing occurs very slowly �complete demixing is
hardly achieved�. In this case, discretized ICDFs or their
compact parametric representation �see Sec. IV C� can be
used as actual coarse observables for the lifting and projec-
tion, in a straightforward manner; particle positions from a
“snapshot” of the bed at any time can be used for the lifting
at a later time.

At larger Us’s, ICDFs locally oscillate at a fast time scale
�see Figs. 2 and 4�b� and Sec. IV B�. Our lifting operator for
single realization computations of such a case requires addi-
tional consideration, as 1D-TWs are present: We therefore
use particle locations obtained at the same “phase angle” of
the wave propagation in earlier simulations. In ensemble-
averaged computations, this oscillatory feature of the bed

...
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FIG. 3. �Color online� An illustration of coarse projective inte-
gration for demixing. Starting from a coarse-grained initial condi-
tion �the first circle, representing an instantaneous ICDF�, �1� the
detailed model is appropriately initialized �through lifting� and �2�
integrated for a short time, during which �3� a series of ICDFs are
recorded �through restriction�. By making use of temporal smooth-
ness of ICDF evolution, �4� a local temporal slope is estimated
�solid straight line�, and an ICDF at a significantly later future time
is projected �dashed line�; the whole procedure is repeated in time.
The solid line represents ICDF evolution from a full-time detailed
MD-based simulation.
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FIG. 4. �Color online� Direct, full integration �thin lines� and
coarse projective integration �patches of thick lines�, using an even
discretization of the particle ICDFs as the coarse observables. �a�
Slow demixing at Us=0.19, where the bed hardly expands and no
1D-TWs form. Projective steps of �t=80 were taken through for-
ward Euler, after direct integration for �t=20 �the latter half of data
were used to estimate the local slope�. �b� In the presence of 1D-
TWs �Us=0.41�, �t=30 and �t=2T, where T is the average period
estimated during short bursts of direct integrations; the last two
periods of the locally oscillating data were used to estimate the
coarse slope.

MOON, SUNDARESAN, AND KEVREKIDIS PHYSICAL REVIEW E 75, 051309 �2007�

051309-4



becomes smoothed through averaging �over various phase
angles during the oscillations�, requiring no special attention
�Sec. IV C�.

B. Coarse projective integration using discretized ICDFs

We begin by choosing discretized ICDFs of the lighter
particles as the coarse observables. We accelerate the demix-
ing computation using the coarse projective forward Euler
scheme �21,22�. For smaller Us �slightly above the minimum
fluidization rate�, where the bed hardly expands and ICDFs
do not oscillate, the projection step size is determined by
only the temporal smoothness �accuracy of the local linear-
ization� of ICDF evolution. The demixing occurs very slowly
in this case �Fig. 4�a��, and coarse projective integration can
achieve high computational speedup. When excessively large
projection step sizes are chosen, they can cause inaccuracies,
similar to large time steps in normal numerical integration of
ordinary differential equations. For larger values of Us, in the
presence of 1D-TWs the projection step size is chosen to be
an integral multiple of the local oscillation period �Fig. 4�b��.
Lifting in both cases requires only negligible extra cost, and
the computational gain realized by the coarse projective in-
tegration is determined by the ratio betweeen the short burst
duration �required to accurately estimate the time derivative�
and the projective step size. In Fig. 4 the computational gain
factor observed ranges between two and five �we observed
gain factors up to about ten in other cases�.

Projectively integrated values �thick lines in Fig. 4� fol-
low the trajectories of direct, full integrations �thin lines in
Fig. 4� well, validating our choice of coarse observables.
These are indeed the variables that one should use to obtain
closed-form coarse-grained equations. Ensemble-averaging
of ICDFs over different realizations �of different phase
angles during wave propagation� smoothens local oscilla-
tions arising from 1D-TWs. Projective integration of
ensemble-averaged ICDFs, both in the presence and absence
of 1D-TWs, can be applied in the same way as was done for

the case shown in Fig. 4�a�; no extra consideration is neces-
sary, even when 1D-TWs are present.

C. A more compact description

The difference between the ICDF of particles located in
the upper half of the bed �irrespective of their densities� and
that of the lighter ones can serve as a useful alternative
coarse observable. Indeed, the ICDFs of the lighter particles
are bounded by those of the �total� top half particles, and
hence their difference is always positive definite �Fig. 5�.
Furthermore, once nearly-full local demixing occurs, the
ICDF difference there becomes virtually zero. The difference
of the two ICDFs can be fit by the following simple func-
tional form, quantifiable with only four variables �dashed
lines in Fig. 5�:

y = max�Ax + B + C exp�Dx�,0� , �10�

where A�t�, B�t�, C�t�, and D�t� �parametric representation of
the functional shape� are our new coarse observables; x and y
represent the abscissa and the ordinate in Fig. 5, respectively.
During a detailed simulation the values of these observables
�restriction� are determined on the fly by functional fitting.
Other basis functions, such as high-order polynomials also
can fit the functional form reasonably well, but they require
many more terms �due to large curvatures for small values of
CDFs at later times�. Furthermore, the time evolution of
higher order coefficients of such an expansion may not be
�and we observed it not to be� slow. The lifting procedure
using these new coarse observables involves a minor inter-
mediate step, compared to the ones in Sec. IV B; a mapping
between these four variables and an ICDF discretization
through the functional form in Eq. �10�.

We use these four coarse observables to perform
ensemble-averaged coarse projective integration over a num-
ber of realizations �Fig. 6�. These observables vary slowly
and smoothly in time �occasional oscillations disappear for
larger ensembles�; in a sense, this is a pseudospectral solu-
tion of the unknown governing equations for ICDF evolu-
tion.
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FIG. 5. �Color online� Evolving inverse CDFs �ICDFs� for the
same case as in Fig. 1, averaged over 10 realizations: �A� ICDF of
particles physically located in the upper half of the bed and �B�
ICDF of the lighter particles, which are shown at t=150. Solid lines
with negative slopes are snapshots of the difference between �A�
and �B� at different times; compare with the functional fit shown as
dashed lines; see Eq. �10�.
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FIG. 6. �Color online� Comparison between direct, full integra-
tions �solid lines� and coarse projective integrations �groups of
dots�, using the four coarse observables in Eq. �10�.
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V. CONCLUSIONS

We have used an equation-free coarse-grained approach to
accelerate �by a factor of two to ten; the lifting step in our
study involves minimal computational cost� detailed compu-
tations of dense particulate flows and, in particular, of demix-
ing occurring in gas-fluidized beds of particle mixtures of
dissimilar density. This approach holds promise for the ac-
celerated prediction of coarse-grained behavior at practically
relevant spatial and temporal scales. Note that here we
coarse-grained originally �10N-dimensional detailed model
eventually down to four-dimensional coarse-grained descrip-
tion �Sec. IV C�, where N is the number of particles
��10 000�.

We deliberately considered a quasi-1D illustrative prob-
lem in our study, in order to demonstrate the viability of the
approach. As a consequence of the problem considered in
this study, the coarse observables were one-dimensional dis-
cretized ICDFs or their parametric representations. For sys-
tems involving higher dimensional flows, candidates for

coarse observables include marginal and conditional ICDFs
�25�. More work for such systems has to be done to identify
proper coarse observables and an efficient lifting operator,
vital components of the approach. Ensemble averaging re-
duces fluctuations among the realizations, giving better
quantitative statistical representations. One can easily see
that the computation of each realization can be readily par-
allelized across computational nodes.

More sophisticated equation-free algorithms that we have
not used here �e.g., coarse fixed point algorithms �6�� can be
applied to find stable as well as unstable steady states; quan-
tify their stability; and perform numerical bifurcation analy-
sis. Exploiting such tools to investigate the coarse-grained
dynamics of mixing and demixing �and other particulate flow
problems� is the subject of current research.
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